1.求问 向量的表示方法 有哪几种
1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。
2、几何表示:向量可以用有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。 (若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度.这种具有方向和长度的线段叫做有向线段.) 3、坐标表示: (1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底.a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。
由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y).这就是向量a的坐标表示.其中(x,y)就是点P的坐标.向量OP称为点P的位置向量。 (2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底.若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。
由空间基本定理知,有且只有一组实数(x,y,z),使得 a=向量OP=xi+yj+zk,因此把实数对(x,y,k)叫做向量a的坐标,记作a=(x,y,z).这就是向量a的坐标表示.其中(x,y,k),也就是点P的坐标.向量OP称为点P的位置向量。 (3) 当然,对于空间多维向量,可以通过类推得到 。
注: 向量的定义: 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。
箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。
在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。
许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。
一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。 几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。
此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。
不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。 扩展资料: 向量的运算法则:(向量的加法满足平行四边形法则和三角形法则) 1、向量的加法 OB+OA=OC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB. a=(x,y)b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣. 当λ>0时,λa与a同方向; 向量的数乘法则: 当λ 向量的数乘当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ 当∣λ∣0)或**反方向(λ 注:数与向量的乘法满足下面的运算律 : ①结合律:(λa)·b=λ(a·b)=(a·λb). ②向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. ③数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. ④数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ. 4、向量的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a·b=x·x'+y·y'. 向量的数量积的运算律 : ①a·b=b·a(交换律); ②(λa)·b=λ(a·b)(关于数乘法的结合律); ③(a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 : a·a=|a|的平方. a⊥b 〈=〉a·b=0. |a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 注:向量的数量积与实数运算的主要不同点 : ①向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2. ②向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c. ③|a·b|≠|a|·|b| ④由 |a|=|b| ,推不出 a=b或a=-b. ⑤向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a*b(这里并不是乘号,只是一种表示方法。
2.向量的表示方法
向量的表示方法:
1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。
2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。这种具有方向和长度的线段叫做有向线段。)
3、坐标表示:
1) 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z),使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, k)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, k),也就是点P的坐标。向量OP称为点P的位置向量。
3) 当然,对于空间多维向量,可以通过类推得到(此略).
3.向量的表示有哪些
画图 坐标 向量的表示方法有坐标表示和用有向线段表示,和用复数表示。
向量的坐标表示:
起点在坐标原点,那么如果终点是A,可以用终点A来表示.
http://202.119.2.197/courses/%B8%DF%C6%F0%B1%BE/%B9%AB%B9%B2%BB%F9%B4%A1%BF%CE%B3%CC/%B8%DF%B5%C8%CA%FD%D1%A7B%A3%A8%C9%CF%A3%A9%B5%DA%B6%FE%B0%E6/webcourse/JiChuPian/JiBenNeiRong/ch7/xldzbbs.htm
向量的复数表示:
向量的起点在原点,而如果它的终点坐标是(a,b),那么它的复数表示方法是Z=a+bi,a是实部,bi是虚部.
向量的有向线段表示:
有向线段的长度就是向量的模长,有向线段的方向是向量的方向.如果向量的起点是A,终点是B,那么可以用AB个向量,A前B后,表示方向是从A到B,AB的长度就是这个向量的模.
有几何表示法 代数表示法···
4.向量的表示方法是怎样的
答:向量的表示方法有坐标表示和用有向线段表示,和用复数表示。
向量的坐标表示:起点在坐标原点,那么如果终点是A,可以用终点A来表示.http://202.119.2.197/courses/%B8%DF%C6%F0%B1%BE/%B9%AB%B9%B2%BB%F9%B4%A1%BF%CE%B3%CC/%B8%DF%B5%C8%CA%FD%D1%A7B%A3%A8%C9%CF%A3%A9%B5%DA%B6%FE%B0%E6/webcourse/JiChuPian/JiBenNeiRong/ch7/xldzbbs.htm向量的复数表示:向量的起点在原点,而如果它的终点坐标是(a,b),那么它的复数表示方法是Z=a+bi,a是实部,bi是虚部.向量的有向线段表示:有向线段的长度就是向量的模长,有向线段的方向是向量的方向.如果向量的起点是A,终点是B,那么可以用AB个向量,A前B后,表示方向是从A到B,AB的长度就是这个向量的模。.。
5.向量的表示有哪些
画图 坐标 向量的表示方法有坐标表示和用有向线段表示,和用复数表示。
向量的坐标表示:起点在坐标原点,那么如果终点是A,可以用终点A来表示.http://202.119.2.197/courses/%B8%DF%C6%F0%B1%BE/%B9%AB%B9%B2%BB%F9%B4%A1%BF%CE%B3%CC/%B8%DF%B5%C8%CA%FD%D1%A7B%A3%A8%C9%CF%A3%A9%B5%DA%B6%FE%B0%E6/webcourse/JiChuPian/JiBenNeiRong/ch7/xldzbbs.htm向量的复数表示:向量的起点在原点,而如果它的终点坐标是(a,b),那么它的复数表示方法是Z=a+bi,a是实部,bi是虚部.向量的有向线段表示:有向线段的长度就是向量的模长,有向线段的方向是向量的方向.如果向量的起点是A,终点是B,那么可以用AB个向量,A前B后,表示方向是从A到B,AB的长度就是这个向量的模.有几何表示法 代数表示法···。